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temological foundations for today’s computers. These lines of work attempt to briefly 
analyze the fundamental epistemological problem that rose in the late 19th and early 
20th century whereby “machine cognition” emerges. The epistemological roots addres-
sed in the tm and notably in its “Halting Problem” uncovers the tension between 
determinism and uncertainty, regarded here as the primal and inherent features of 
machine cognition. 
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Resumen: La Máquina de Turing (tm) se presenta como el hito y el diseño 
inicial de un autómata digital presente en todas las computadoras digitales 
modernas de propósito general y cuyo diseño en números computables esta-
blece bases profundamente ontológicas y epistemológicas para las computa-
doras de hoy. Estas líneas de trabajo intentan analizar brevemente el problema 
epistemológico fundamental que surgió a finales del siglo xix y principios del 
xx mediante el cual emerge la “cognición de la máquina”. Las raíces epis-
temológicas que se abordan en la tm y, en particular, en su “Problema de 
detención” ponen al descubierto la tensión entre el determinismo y la incerti-
dumbre, consideradas aquí, como las características primordiales e inherentes 
de la cognición de la máquina.
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“In answering the «Entscheidungsroblem», Turing 
proved that there is no systematic way to tell, by 

looking at a code, what that code will do. 

That’s what makes the digital universe so interesting, 
and that’s what brings us here. 

It is impossible to predict where the digital universe 
is going”.

(George Dyson, 2012a)

Introduction

Finding an universalis algorithm that could mechanically compress the uni-
verse1 using logical formalization was meant to be the final achievement 
pursued by philosophers and mathematicians in the late 19th and begin-

ning of the 20th century. As a response to these attempts, the prototype of a 
synthetic mind emerged in 1936 and it is known today as the Turing Machine 
(tm) which constitutes the original and still-present design of basic cognition and 
computation processes in our day-to-day computers. 

This article argues that the main epistemological breakthrough regarding 
mental activity and computation was triggered by Alan Turing’s paper called: 
“On computable numbers, with an application to the Entscheidungsproblem” 
(1936),2 which upholds that the prevailing tension between determinism and un-
certainty constitutes the epistemological pinnacle of machine cognition. Turing’s 
1936 work integrates two fundamental aspects of machine cognition: on the one 
hand, the tm solves the Entscheidungsproblem (translated as the “decision prob-
lem”) through what is known as “the halting problem”. Turing unveiled the part 

1	 The mathematical understanding of the universe originally takes up Galileo’s references by com-
paring it to a book “written in the language of mathematics” (Galileo, 1623, in Haugeland, 
1985: 19) which is fundamentally based on a geometric and arithmetic view of the field. Also 
see Galileo’s work “The Assayer” (1960: 151-336).

2	  Despite the fact that Turing’s article was published in 1937, it is mostly recognized from 1936. 
I will continue to use Martin Davis’ references to this article as from 1936.
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of mathematics that cannot be computed and demonstrated the non-existence of 
the algorithm that Hilbert and Ackermann (1928) asked for. On the other hand, 
it also establishes the ontological foundations of computers: the Universal Turing 
Machine (utm), which ascribes to machines the possibility to recognize any other 
machine’s encoded data and reproduce its behavior (given enough time, memory 
and embedding it into a specific language frame).

The first section of this article outlines the core epistemological crisis be-
tween mathematics and logic at the beginning of the 20th century while clarify-
ing how the route through this crisis finally led to the tm’s formulation. The sec-
ond section is divided in two sub-sections; the first subsection describes in general 
terms the functioning of the tm for a broad understanding and contemplates the 
problem posed by countable and uncountable infinities. The second subsection 
underlines the notion of universality via the ontological state of the tm. The third 
section focuses on the ambivalence between determinism and uncertainty which 
the halting problem should help to clarify. This article will conclude that the latter 
concepts (that is to say, determinism and uncertainty) constitute the inherent 
features of the epistemological and ontological genesis of any digital computer.

The early historical and epistemological crisis
At the end of the 19th and beginning of the 20th century, many mathematicians 
and philosophers strove to explain the foundations of mathematics by peeling 
away its layers using formal logic instruments. This philosophical approach, best 
known as logicism, was fueled by the publication of Principia Mathematica by 
Whitehead and Russell in 1910. Its main representatives —Gottlob Frege, David 
Hilbert, Bertrand Russell, Alfred North Whitehead, Richard Dedekind— en-
deavored, though in different ways, to see mathematics as an extension of logic. 
The underlying question to prove whether logic could provide a consistent basis 
for mathematics led to one of the most significant epistemological crises in math-
ematical logic3 (1850-1950) and it served as the embryonic stage of “machine 

3	  The foundations of mathematical logic begin with Aristotle’s syllogistic logic and culminate in 
Boolean algebra whose extensional or set theoretical semantics does not imply the interpretation 
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intelligence” or “machine cognition”, i. e., what came to be called as the Turing 
Machine.4

At the bottom of mathematics, some logicist had mostly focused on the so-
called Hilbert’s program whereby all mathematical structures could be proved to 
be consistent (i. e., the form A and not-A cannot be proven within the same 
formal system) through complete logical rules: “For Hilbert, noncontradiction 
was the essential condition of existence as such” (Hörl, 2018: 67). The search for 
a finite representation, a general method (i. e., an algorithm)5 in the language of 
a logical system was triggering the possibility that the whole universe of math-
ematics could be derived from Frege’s system of logic,6 namely first-order logic 
(engerer Funktionenkalkül).

Nonetheless, the intrinsic relation between symbols and logical rules under-
went a systemic déphasage. It collapsed with Gödel in 1931, the Austro-Hungarian 
mathematician demonstrated that pure formal deduction could not encompass all 

of symbols but how their fixed laws are combined. See, Boole, 2017 [c. 1854]. For a wider his-
torical view of this passage from ancient logic to the modern one: see, Walicki, 2012. 

4	  Turing (1969 [c. 1948]: 410-432) uses the expression “logical computing machines” (lcm) 
instead of Turing machines.

5	  In a German mathematical dictionary from 1747: Vollständiges Mathematisches Lexicon, the 
word “algorithm” was still referring to merely basic arithmetic operations. According to Petzold 
the modern use of the word algorithm (a finite set of steps able to perform a computation) only 
started to be used in the 1960’s along with the “literature about computers” (2008: 41-42).

6	  Frege (1993) is acknowledged as being the father of modern logic and of the basic rules of 
logical deduction that had been proposed in his work Begriffsschrift (1879), which are the first 
logical models of mathematical reasoning and also of natural language. These early formaliza-
tions were intended to be the steps towards a complete system as the one fostered by Leibniz, the 
characteristica universalis of which strove for universality fixed by logical calculus. Here, one can 
detect an “encyclopedia of human knowledge” operated by the indexicality of the calculation of 
symbols and with it the demonstration of true postulates. Finally overthrown by “Russell’s An-
tinomy”, Frege’s system was nevertheless incorporated later by Whitehead and Russell in their 
Principia Mathematica. For more information see Davis, 2018. 
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mathematics, which he revealed through a sort of self-referential proof known as 
“Gödel’s Incompleteness Theorem”.7 

After the setback produced by Gödel’s Incompleteness Theorem, the British 
mathematician and philosopher Bertrand Russell (1872-1970) and the Hungar-
ian mathematician John von Neumann (1903-1957) abandoned mathematical 
logic, yet the decision problem remained: was a given formula provable or not? 

Finding a logical formal system able to encompass the roots of mathematics 
and thus to mechanically achieve a procedure of symbolically tracing “the full 
scope of human thought” (Davis, 2018: 11) had been the aim ever since the 
pioneer of the idea of universal automation, the calculus ratiocinator, Gottfried 
Leibniz (1646-1716) formulated the problem. But it was only two hundred years 
later when David Hilbert, along with his student Wilhelm Ackermann, made 
every possible effort to formalize it by means of the “decision problem”.8 A prosaic 
reformulation of the decision problem (1928) asks if it is possible to have a set of 
rules (an effective method) where you can input a mathematical formula and 
it consequently outputs whether it is true or not? That is to say, if there is any 
mechanical procedure that “decides whether any given number belongs to the set 
at issue or not” (Raatikainen, 2020). In short: is it possible to obtain a theorem 
from a given formula? 

After Gödel’s proof (1931) that logic, i. e., formal axiomatic theories could 
neither provide a foundation nor produce all mathematics, the excitement about 
the decision problem dwindled. Although a solution for the decision problem could 
still exist, it would no longer demonstrate the truth of any theory because it ei-
ther fails to prove its consistency or fails to prove its completeness, which are the 
necessary conditions for correct reasoning in a logical system. 

7	  The greatest epistemological crash proceeds from this aporetic state of axiom systems which 
either imply contradictions or can’t even be proven within the system, this is what is known 
as “Gödel’s Incompleteness Theorem”: roughly, “the impossibility to determinate the truth of any 
given formula” (Petzold, 2008: 52). 

8	  This problem was outlined in the early 20th century at different Mathematical Congresses and 
later, concretized in a 1928’s logic book: Grundzüge der theoretischen Logik (Principles of Mathe-
matical Logic).
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It is philosophically relevant not to skip over the epistemological problem 
posed at this point, which consists in the fact that Gödel showed that logical 
proofs cannot produce the full set of mathematical truth, but this does not entail 
that every true statement must necessarily have a proof to be true. To argue that 
something is “true” one must previously clarify the reference of the notion (i. e., 
the distinction between a (syntactic) proof and (semantic) truth):

A great deal of confusion can be caused by this, because people generally unders-
tand the notion of “proof” rather vaguely. In fact, Gödel’s work was just part of a 
long attempt by mathematicians to explicate for themselves what proofs are. The 
important thing to keep in mind is that proofs are demonstrations within fixed 
systems of propositions. (Hofstadter, 1994: 26)

On the one side, the syntactic nature of truth requires proof: “You begin 
with axioms and derive theorems. Such theorems are said to be provable, mean-
ing that they are a consequence of the axioms. With the syntactic approach to 
logic, it’s not necessary to get involved with messy – possibly metaphysical – con-
cepts of truth” (Petzold, 2008: 217). On the other side, the metamathematical 
and semantic nature of truth entails understanding the meaning9 from the sen-
tences at stake. “To Searle, this means that a digital computer – no matter how 
sophisticated it becomes – will never understand what it’s doing in the same way 
that a human can” (Petzold, 2008: 347).10

The decision problem became the type of dilemma in the mathematical world 
that was ripe for a revolutionary leap: from the sunset of the logicist program11 

9	  In Die Grundlagen der Arithmetik (1884), Frege distinguishes between meaning (Bedeutung) 
and sense (Sinn), terms like “the morning Star” and “Venus” have the same meaning because 
they indicate the same object but nevertheless use different senses.

10	  Some well-known arguments against the mind as algorithmic processes can be founded in: 
Nagel and Newman, 1958. Also, in Roger Penrose, 1989 and 1994. On the critical line about 
the efforts of mind-computer simulation, see; Searle, 1980. Finally, another argument against 
the view of minds as machines, Lucas, 1961.

11	  Even though the logicist program has never been able to prove the impossibility of contradic-
tion within its axiomatic systems, a logicist progress free of “Russell’s paradox” (though not of 
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rose the dawn of the most universal machine of all, the Turing Machine,12 which 
marks the beginning of an epistemology for digital machines. As already stated, it 
was Turing who masterminded the “world crisis” in mathematical logic by find-
ing that part of mathematics that can be run by a sequential and deterministic 
process we call “computers”.

The Turing Machine 
The serial machine
It wasn’t until the spring of 1935 at Cambridge University in one of Max New-
man’s courses on the Foundations of Mathematics that Turing came to terms with 
the most prominent problems in mathematical logic, the proof of Gödel’s Incom-
pleteness Theorem and the still unresolved decision problem. 

The proof for the non-existence of the algorithm incessantly sought by Hil-
bert was finally shown in Turing’s paper (1936). This proof was not only a mat-
ter of abstract mathematics but also a bridge between “abstract symbols and the 
physical world” (Hodges, 2012: 93) because it opened the gates to the digital 
kosmos.13

At the foundation of the tm, phase-transitions of finite states in time (if-then 
transitions) are characterized as deterministic and serial procedures coded on a 

all its axioms) had been possible with the “Zermelo–Fraenkel set theory” (ZFC) launched in the 
early 20th century. However, even when ZFC can prove the consistency of, for example, Peano 
arithmetic, the system is incapable for itself to prove consistency. See, Simpson, 1999. Also see 
Solovay, 1970.

12	  Another formally equivalent algorithmic representation that can encode any sequential pro-
gramming language can be found in “μ-recursive functions”, or in the “λ-calculus” (lambda cal-
culus), the latter was created by Alonso Church which shortly proceeds Turing’s founding. This 
is the reason why Alan Turing had to briefly integrate the λ-calculus as a footnote in his 1937’s 
paper, and so Church became Turing’s Ph. D. supervisor. It was also Church who suggested to 
the logician Emil Post the unsolvable problem and whose results can be found in: Post, 1947.

13	  I use the term “digital kosmos” for a general reference to the digital environment.
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transition table where data is placed on a potentially infinite tape.14 This mech-
anistic procedure is recognized as the fundamental iterative statement for the 
manipulation of formal and meaningless15 tokens. The modern algebraist Charles 
Petzold states that the tm performs at a level so simple that “if the machine did 
anything less than what it does, it wouldn’t do anything at all” (2008: vii). 

This “essentially complex machine” (Blanco, 2013) is made up of three basic 
elements (tape, head, and program) which constitute what we recognize today 
in any electronic device under the names of memory and microprocessor, which 
reads and executes the programs. The scanning head reads the basic set of pre-
viously set-up instructions in order to adapt and modify its “internal state”. For 
instance, if the internal state is 1, then move to the left and replace it with 0 and 
then move forward to the right and continue or break the process. Thereby, the 
machine adjusts its internal state by moving forward along the instructions chain 
until it produces the desired output and terminates.

The performance that corresponds to a value of a symbol (scanned symbol) 
is what Turing coined as; “m configuration”, “internal states”,16 “mental states” 
which pictures the “mental image” that the machine scans according to a prede-
fined set of rules, with the aim of keeping, generating or erasing a symbol: “The 
behavior of the computer at any moment is determined by the symbols which he 
is observing, and his <state of mind> at that moment” (Turing, 1936: 5). This 
serial17 procedure (one instruction is executed after the other) from one “state of 

14	  The number of symbols contained on the tape (thus, the length of the tape) will depend on the 
computer’s storage capacity. This extensional dimension constitutes the physical spatial aspect 
of the machine (i. e. the hardware), whose software, i. e., the set of existing computable states or 
“states of mind”, will be determined by the totality of all its possible combinations. 

15	  Symbols as such are meaningless, yet they become a meaningful symbol token through a fixed 
interpretation, it is not prescribed a priori what expressions it can designate. This arbitrariness 
pertains only to symbols (Newell and Simon, 1976).

16	  Unlike tm, the “λ-calculus” does not have any internal state, the function that processes the 
mathematical operations works as a black box that does not afford to see the internal mechanics 
within it. 

17	  Daniel Dennett also offers a description of non-serial computers: “computers are serial [...]. 
There are exceptions; some special-purpose parallel-architecture computers have been created, 
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mind” to the next one, limits the machine to observe only one box at a time while 
decoding the information and re-encoding it again on the tape.18

Each symbol represents a precise and finite value or set of values, as, from 
a computational point of view, a tm can only process one finite value at a time; 
a finite automaton. Consequently, a finite number of steps will allow obtaining 
a result, a process called “effective procedure”. Hence, when the semantics of 
classical mathematics raised the problem of “infinite functions”, it collided with 
what a tm can compute. The German artificial intelligence scientist Joscha Bach 
exemplifies: “Pi (π)19 in classical mathematics is a value and is also a function, but 
it’s the same thing. And in computation, a function is only a value when you can 
compute it. And if you can’t compute the last digit of π, you only have a function” 
(2020: 16:00-16:15). In his 1936’s paper, Turing uses the principle of parsimony 
to remove any mathematical excess: “We shall avoid confusion by speaking more 
often of computable sequences than of computable numbers” (1936: 233). The 
problem of non-computable numbers became clear for Turing by taking up Can-
tor’s idea (1874) of the existence of real numbers as uncountable: 

In that same 1874 paper where Cantor demonstrated that the algebraic numbers 
are enumerable, he also demonstrated that the real numbers are not enumerable. 
[...] What Cantor eventually realized is that there are at least two kinds of infinity: 
There’s an enumerable infinity and a non-enumerable infinity – an infinity of the 
natural numbers and an infinity of the continuum. (Petzold, 2008: 24-26)

but the computers that are now embedded in everything from alarm clocks and toaster ovens to 
automobiles are all serial architecture «von Neumann machines»” (Dennett, 2017: 155). 

18	  This decoding-encoding procedure is reminiscent of what the French philosopher Simondon 
(1924-1989) coined as allagmatic when he generally referred to cybernetics; “the general theory 
of exchanges and of state modifications” (Simondon, 1958, in Bardin, 2015: 15). 

19	  Charles Petzold describes how the construction of geometrical shapes is equivalent to solving 
certain forms of algebraic equations and traces it back to the ancient Greeks who thought it 
impossible to square the circle, they named this “obsessive activity” (τετραγωνίζειν) tetragonize. 
Just like the ancient Greeks, we can’t construct a geometrical representation for the number π, 
since this irrational number “is not a solution to any algebraic equation” (2008: 13-35). 
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Therefore, on the one side, there is computable infinity, which can be defined 
as “real numbers that can be computed to within any desired precision by a finite, 
terminating algorithm” (Veisdal, 2019). For instance, real numbers like π might 
be considered “Turing complete or computable”, that is, they can be executed 
through finite commands in a program through a process of approximation that 
will last indefinitely. As clarified by the Argentinian computer scientist Javier 
Blanco: “The original tms were ‘good’ when they did not finish and in the in-
finite process, they computed all the decimal places of some real number” (2020, 
personal correspondence). On the other side, there is an uncomputable infinity 
(which includes most of the real numbers); which are numbers not able to be 
computed at all and for which there is no algorithm that can compress and define 
them, so the only thing left to do is to write them digit by digit.20 Hence, the 
functions computed by a tm are by definition computable functions: “Machines 
are definite: anything which was indefinite or infinite we should not count as a 
machine” (Lucas, 1961: 114). Even the functions that perform the simulated par-
allel processing done by artificial neural networks, that loosely mimics the human 
brain, are also replicated on these serial machines (Dennett, 2017: 155-156). 

The universal machine 
The universality of the tm is a consequence of the logical-mathematical inter-
play between the outside (symbols) and the inside (code number) for which the 
machine represents the outside that can be transferred to the inside: “a machine 
could be encoded as a number, and a number could be decoded as a machine” 
(Dyson, 2012a: 250). 

20	  One attempt has been made by the Argentine-American mathematician Gregor Chaitin in 
what is known as the “Chaitin’s constant” (Omega) which is supposed to work as a solution 
to the halting problem. This questionable “halting probability” assumes that the sequences of 
random real numbers might be computable by a probabilistic solution. Here is an example of 
“Chaitin’s Thought Experiment (Barmpalias, 2018): Suppose we run a universal Turing machine 
on a random binary program. Specifically, whenever the next bit of the program is required, we 
flip a coin and feed the binary output to the machine. What is the probability that the Turing 
machine will halt?” (Veisdal, 2019). 
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What is at stake in this type of universality is that any digital data is onto-
logically the same. Therefore, modifications of its internal states entail the adapt-
ability of the machine’s cognition. In fact, the chain of utm essentially represents 
running a computer within another computer, i. e., a computer that takes a pro-
gram as data and runs itself. To put it simply, the idea of a machine copying 
another machine’s behavior means that we give an input string (w) to the tm, 
and this one behaves by accepting, rejecting it, or looping through infinitely. To 
determine which is the machine’s behavior < tm, w> we create another machine 
called utm, which will receive as an input the tm with its string (w) and simulate 
the behavior of the host tm.

Before Turing the general supposition was that in dealing with such machines the 
three categories – machine, program, and data – were entirely separate entities. [...] 
Turing’s universal machine showed that the distinctness of these three categories is 
an illusion. (Davis, 2018: 143)

The digital kosmos is shrouded in universality. Just like the underlying foun-
dations of analytic connections and their inferences of thoughts are to be found 
in the universality of the algebraic laws set-up by Boole, so is the foundation of 
the computer set-up by Turing profoundly rooted in the universal state of data: 

With the development of the second generation of electronic machines in the 
mid-forties (after the Eniac) came the stored program concept. This was rightfully 
hailed as a milestone, both conceptually and practically. Programs now can be data, 
and can be operated on as data. This capability is, of course, already implicit in the 
model of Turing: the descriptions are on the very same tape as the data. Yet the idea 
was realized only when machines acquired enough memory to make it practicable 
to locate actual programs in some internal place. (Newell and Simon, 1976: 117)

The ontology of machine cognition is generally based on pure simulacra, a 
fact that spurred Turing to develop in 1950 the simulation of the, later called, the 
Turing Test. The genesis of digital machines emerges with a machine able to be-
have as any other machine (utm) and it follows the artificial intelligence idea of a 
machine that can behave as any given human being by capturing “the functional 
relations of the brain for so long as these relations between input and output are 
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functionally well-behaved enough to be describable by [...] mathematical rela-
tionships [...] we know that some specific version of a Turing machine will be able 
to mimic them” (Sam Guttenplan, 1994: 595 in Copeland, 2020).

The ambivalence of machine intelligence
The ontological and epistemological commitments in philosophical and mathe-
matical thought in the early 20th century was nothing like φῐλοσοφῐ́ᾱ, the love 
for wisdom, but rather an unending and uncertain path to the truth. Rephrasing 
Borges’s poem: they “weave their incalculable labyrinth [...] not joined by love 
but by threat” (1974: 946).

The fundamental structural and operational ambivalence of the tm starts with 
the epistemological tension that took place when the operation of the learning 
process (the program’s behaviors) run by the structure (set of predefined rules) 
produced inconsistencies in the process. “As Mathieu Triclot correctly points out, 
the fundamental problem is the statute of the rules, if they are fixed a priori or 
if they emerge as regularities from a learning process” (Blanco, Parente,  Rodrí-
guez, and Vaccari, 2015: 105). The aspect of the uncertainty (Unbestimmtheit) ex-
plicit in the halting problem emerges from a deterministic system (serial structure 
of predefined rules) operating at a high uncertainty level (program’s behavior), 
which consequently does not allow to predict the machine’s behavior.

The halting problem is “a proof by contradiction” that addresses the self- 
referential nature of the programs. It raises the question of whether there is a 
general-purpose program (gpp) that can always decide whether another program 
and its input will ever halt or not? Turing stripped the problem to its bare essen-
tials: to prove the impossibility of the gpp, another program would have to be 
produced in order to use it. This second program will be the one that leads to a 
contradiction because there is at least one case (one counterexample) in which 
it cannot predict the behavior of the program being tested (gpp) since it might 
keep looping through ad aeternum or terminate its execution. Thus, the problem 
remains undecidable and the halting problem remains unsettled.21 

21	 The semantics of a logical system is based on what the terms of a theory refer to and the inter-
pretation of its connectives, for a precise understanding of the undecidability of the semantics 
property (behavior) of programs see, Rice, 1953.
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The nature of this problem is mainly self-referential: the gpp should be able 
to predict the behavior of any other program, and since the gpp is itself a pro-
gram, it can be taken as an input for another program. The attempt to determine 
if it terminates or not and, at the same time, being a program itself leads into a 
contradiction. “Interestingly, the proof of this theorem shows that in any for-
mal theory satisfying its conditions, one can write an analog of the liar paradox, 
namely, the sentence ‘I am not provable in this theory’” (Walicki, 2012: 29). If 
true and provable, it leads to a false affirmation, and if false, there is something 
true that cannot be proven. The epistemological ambivalence in the domain of 
programs combines a perfectly determined machine (by knowing all of its ins-
tructions and inputs) with its unpredictable behavior because it lacks the formal 
methods to predict “what the behavior of a universal machine will be” (Blanco, 
2014: 8). 

The impossibility of solving the halting problem mechanically means that its be-
havior cannot be predicted despite being deterministic; that the best that can be 
done is to carry out the execution of the machine for that particular case and see 
what happens, having to assume that sometimes nothing visible will happen, the 
machine will remain processing indefinitely. We can mechanically explain each 
step of the behavior of this machine without being able to know how it will behave 
globally. (Blanco, 2014: 8)

This fundamental tension affects machine cognition where it originates: the 
machine’s Umwelt is neither to be found in its deterministic process nor entirely 
in the uncertainty that stems from the process but in their mutual mediation. 
The layout of the digital kosmos by means of machine cognition emerges from 
the epistemological ambivalence of its “mental acts”: on the one side, the sequen-
tial-determinist state for which the tm uncovers the possibility to mechanically or 
effectively act according to predefined rules, and on the one side, the uncertainty 
state produced during the process itself. Ultimately, the reversed solution of the 
decision problem shown by Turing uncovers the fact that determinism does not 
entail predictability.  

The structural level of logic-based rules generates efficient operations and 
self-regulations of computers through the rearrangement and combination of its 
datasets, obtaining results within a specific time frame. At the operational level, 
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even when the machine’s behavior is part of a predetermined system, it is not 
entirely governed by it. The halting problem formulates the uncertainty in the 
learning process of any computer, while the behavior of subsequent programma-
ble systems is the result of this epistemological ambivalence. 

This inherent indecision shapes the primal nature of every programmable 
system, and consequently pervades forthcoming uncertainty and leads to unex-
pected results in the learning process of the machines’ behavior: “Turing’s deter-
ministic universal machine receives the most attention, but his non-deterministic 
oracle machines are closer to the way in which intelligence really works: intuition 
bridging the gaps between logical sequences” (Dyson, 2012b: 459-460). 

Epistemological inconsistencies on the structural and operational levels (a 
completely deterministic machine does not allow formalizing the prediction of 
its output) constitute the grounds upon which all other synthetic cognitive ar-
chitectures are based and whose far-reaching consequences entail more complex 
black box dilemmas.22 

The joy in the evolution of machine cognition is driven by first principles 
“indifferent to their own truth” (Ortega y Gasset, 1958: 6) and whose axiomati-
zation, far from securing a path to provable universality, opens up the ambiguity 
of programmable machines and their uncertain behavior.23 

Conclusion
When Turing wrote his 1936’s paper, he had in mind the idea of a “human being, 
equipped with pencil, paper, and time” (Dyson, 2012a: 247) and he proceeded by 
covering every state through the complete capacity of machine intelligence to com-
pute until nothing human was left. The dawn of machine cognition accomplished 

22	  For the challenges regarding uncertainty in algorithmic trading or black-box trading and con-
structive alternatives, see, Stiegler, 2017. 

23	  Axiomatization is the self-consistent conceptual architecture that serves as the ultimate crite-
rion of infallibility. Dyson sums the concept and its surrounding dilemmas up in the following 
terms: “Axiomatization is the reduction of a subject to a minimal set of initial assumptions, 
sufficient to develop the subject fully without new assumptions having to be introduced along 
the way” (Dyson, 2012a: 49).
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the most important epistemological shift in history: a shift to the symbolic, and 
in doing so, laying the foundations for all subsequent learning processes. 

The epistemological architecture of machine cognition was built on the 
aporetic ruins of Gödel’s incompleteness theorem where the field of mathematics 
was left as fundamentally inconsistent or incomplete (the nature of self-referential 
systems is unable to prove to be formally true by finite means). 

It becomes clear that this original tension between mathematical and sym-
bolic reasoning plays a pivotal role in cognition. Even nowadays, the rate of un-
certainty in programs is a fact that the probabilistic approach24 of artificial intel-
ligence corroborates. The main idea of intelligent behavior in machine cognition 
is expressed by the data compression achieved by “artificial intelligence systems” 
which roughly consist in the measured performances of combined “thought pro-
cesses”, “reasoning”, and “behavior” techniques (Russell and Norvig, 2010).25 

The origin of the tm meant a return to the root of the problem of the nature 
of mathematical reasoning, and although it remains unsolved, the tm pointed the 
way to digital automatization and served as the basis of more developed archi-
tectures of machine’s cognition (e. g., symbolical, connectionist, hybrid architec-
tures). All of them, even the most sophisticated ones, structurally operate within 
this original model of computable numbers which remains as the very foundation 
of any current machine’s general learning process.
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24	  At present, probability as an approach for modeling algorithms in artificial intelligence is one of 
the most explored and used techniques and since this approach is not mainly guided by logical 
rules, it is subject to the imprecise subjectivity of belief that a given evidence will or will not be 
repeated in the future while reinforcing or undermining that belief. Also see, Pearl, 1988.

25	  For a clear and technical definition of these three terms in the field of AI as an essential compo-
nent of rationality, see especially the introduction of Russell and Norvig, 2010.
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